Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
NPJ Biofilms Microbiomes ; 10(1): 18, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448452

RESUMEN

Cranberry is associated with multiple health benefits, which are mostly attributed to its high content of (poly)phenols, particularly flavan-3-ols. However, clinical trials attempting to demonstrate these positive effects have yielded heterogeneous results, partly due to the high inter-individual variability associated with gut microbiota interaction with these molecules. In fact, several studies have demonstrated the ability of these molecules to modulate the gut microbiota in animal and in vitro models, but there is a scarcity of information in human subjects. In addition, it has been recently reported that cranberry also contains high concentrations of oligosaccharides, which could contribute to its bioactivity. Hence, the aim of this study was to fully characterize the (poly)phenolic and oligosaccharidic contents of a commercially available cranberry extract and evaluate its capacity to positively modulate the gut microbiota of 28 human subjects. After only four days, the (poly)phenols and oligosaccharides-rich cranberry extract, induced a strong bifidogenic effect, along with an increase in the abundance of several butyrate-producing bacteria, such as Clostridium and Anaerobutyricum. Plasmatic and fecal short-chain fatty acids profiles were also altered by the cranberry extract with a decrease in acetate ratio and an increase in butyrate ratio. Finally, to characterize the inter-individual variability, we stratified the participants according to the alterations observed in the fecal microbiota following supplementation. Interestingly, individuals having a microbiota characterized by the presence of Prevotella benefited from an increase in Faecalibacterium with the cranberry extract supplementation.


Asunto(s)
Microbioma Gastrointestinal , Vaccinium macrocarpon , Animales , Humanos , Butiratos , Fenoles , Extractos Vegetales/farmacología , Oligosacáridos , Suplementos Dietéticos
2.
Mol Nutr Food Res ; 68(5): e2300641, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38350729

RESUMEN

Clinical trials investigating the health effects of flavan-3-ols yield heterogeneous results due to interindividual variability in the gut microbiota metabolism. In fact, different groups in the population have similar metabolic profiles following (-)-epicatechin and (+)-catechin gut microbial metabolism and can be regrouped into so-called metabotypes. In this study, the capacity of 34 donors to metabolize polymeric B-type flavan-3-ols from aronia and oligomeric A-type flavan-3-ols from cranberry is investigated by in vitro fecal batch fermentations. Less than 1% of the flavan-3-ols from both sources are converted into microbial metabolites, such as phenyl-γ-valerolactones (PVLs). To further confirm this result, gut microbial metabolites from flavan-3-ols are quantified in urine samples collected from participants, before and after a 4-day supplementation of cranberry extract providing 82.3 mg of flavan-3-ols per day. No significant difference is observed in the urinary excretion of flavan-3-ols microbial metabolites. Hence, it demonstrates by both in vitro and in vivo approaches that flavan-3-ols from aronia and cranberry are poorly degraded by the gut microbiota. The beneficial health impacts of these molecules likely stem from their capacity to affect gut microbiota and their interactions with the gut epithelium, rather than from their breakdown into smaller metabolites.


Asunto(s)
Catequina , Microbioma Gastrointestinal , Photinia , Vaccinium macrocarpon , Humanos , Flavonoides/farmacología , Catequina/metabolismo , Extractos Vegetales/farmacología
3.
FASEB J ; 38(2): e23398, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38214938

RESUMEN

In vitro systems are widely employed to assess the impact of dietary compounds on the gut microbiota and their conversion into beneficial bacterial metabolites. However, the complex fluid dynamics and multi-segmented nature of these systems can complicate the comprehensive analysis of dietary compound fate, potentially confounding physical dilution or washout with microbial catabolism. In this study, we developed fluid dynamics models based on sets of ordinary differential equations to simulate the behavior of an inert compound within two commonly used in vitro systems: the continuous two-stage PolyFermS system and the semi-continuous multi-segmented SHIME® system as well as into various declinations of those systems. The models were validated by investigating the fate of blue dextran, demonstrating excellent agreement between experimental and modeling data (with r2 values ranging from 0.996 to 0.86 for different approaches). As a proof of concept for the utility of fluid dynamics models in in vitro system, we applied generated models to interpret metabolomic data of procyanidin A2 (ProA2) generated from the addition of proanthocyanidin (PAC)-rich cranberry extract to both the PolyFermS and SHIME® systems. The results suggested ProA2 degradation by the gut microbiota when compared to the modeling of an inert compound. Models of fluid dynamics developed in this study provide a foundation for comprehensive analysis of gut metabolic data in commonly utilized in vitro PolyFermS and SHIME® bioreactor systems and can enable a more accurate understanding of the contribution of bacterial metabolism to the variability in the concentration of target metabolites.


Asunto(s)
Microbioma Gastrointestinal , Hidrodinámica , Fermentación , Modelos Teóricos , Bacterias
4.
Viruses ; 15(12)2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38140688

RESUMEN

Influenza antiviral drugs are important tools in our fight against both annual influenza epidemics and pandemics. Polyphenols are a group of compounds found in plants, some of which have demonstrated promising antiviral activity. Previous in vitro and mouse studies have outlined the anti-influenza virus effectiveness of the polyphenol epigallocatechin-3-gallate (EGCG); however, no study has utilised the ferret model, which is considered the gold-standard for influenza antiviral studies. This study aimed to explore the antiviral efficacy of EGCG in vitro and in ferrets. We first performed studies in Madin-Darby Canine Kidney (MDCK) and human lung carcinoma (Calu-3) cells, which demonstrated antiviral activity. In MDCK cells, we observed a selective index (SI, CC50/IC50) of 77 (290 µM/3.8 µM) and 96 (290 µM/3.0 µM) against A/California/07/2009 and A/Victoria/2570/2019 (H1N1)pdm09 influenza virus, respectively. Calu-3 cells demonstrated a SI of 16 (420 µM/26 µM) and 18 (420 µM/24 µM). Ferrets infected with A/California/07/2009 influenza virus and treated with EGCG (500 mg/kg/day for 4 days) had no change in respiratory tissue viral titres, in contrast to oseltamivir treatment, which significantly reduced viral load in the lungs of treated animals. Therefore, we demonstrated that although EGCG showed antiviral activity in vitro against influenza viruses, the drug failed to impair viral replication in the respiratory tract of ferrets.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Animales , Perros , Humanos , Ratones , Gripe Humana/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , , Hurones
5.
J Agric Food Chem ; 71(44): 16787-16796, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37890868

RESUMEN

Quantification of nutritional biomarkers is crucial to accurately assess the dietary intake of different classes of (poly)phenols in large epidemiological studies. High-throughput analysis is mandatory to apply this methodology in large cohorts. However, the current validated methods to quantify (poly)phenols metabolites in biological fluids use ultra performance liquid chromatography (UPLC), leading to analysis time of several minutes per sample. To significantly reduce the run time, we developed and validated a method to quantify in urine the flavan-3-ols biomarkers, phenyl-γ-valerolactones (PVLs), using laser diode thermal desorption (LDTD). This mass spectrometry source allows direct introduction of sample extracts, resulting in analysis time of less than 10 s per sample. Also, to encompass the problem associated with the cost and availability of sulfated and glucuronide analytical standards, urine samples were subjected to enzymatic hydrolysis. Creatinine was also quantified to normalize the results obtained from the urinary spot. Results obtained with LDTD-MS/MS were cross-validated by UPLC-MS/MS using 155 urine samples. Coefficient of correlation was above 0.975 for PVLs and creatinine. For all analytes, the accuracy was between 90% and 113% by LDTD-MS/MS. Altogether, sample preparation was fully automated to demonstrate the application potential of this method to large cohorts.


Asunto(s)
Rayos Láser , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Creatinina , Fenoles , Biomarcadores , Cromatografía Líquida de Alta Presión
6.
J Agric Food Chem ; 71(37): 13814-13827, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37683128

RESUMEN

Although the relationship between gut microbiota and flavan-3-ol metabolism differs greatly between individuals, the specific metabolic profiles, known as metabotypes, have not yet been clearly defined. In this study, fecal batch fermentations of 34 healthy donors inoculated with (-)-epicatechin were stratified into groups based on their conversion rate of (-)-epicatechin and their quali-quantitative metabolic profile. Fast and slow converters of (-)-epicatechin, high producers of 1-(3'-hydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol (3-HPP-2-ol) and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (3,4-DHPVL) were identified. Fecal microbiota analysis revealed that fast conversion of (-)-epicatechin was associated with short-chain fatty acid (SCFA)-producing bacteria, such as Faecalibacterium spp. and Bacteroides spp., and higher levels of acetate, propionate, butyrate, and valerate were observed for fast converters. Other bacteria were associated with the conversion of 1-(3',4'-dihydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol into 3-HPP-2-ol (Lachnospiraceae UCG-010 spp.) and 3,4-DHPVL (Adlercreutzia equolifaciens). Such stratification sheds light on the mechanisms of action underlying the high interindividual variability associated with the health benefits of flavan-3-ols.


Asunto(s)
Catequina , Humanos , 2-Propanol , Butiratos , Clostridiales , Heces
7.
Mol Nutr Food Res ; 67(17): e2300074, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421210

RESUMEN

SCOPE: The beneficial health effects of (poly)phenol-rich foods such as red grapes mainly depend on both the type and concentration of (poly)phenols. Since fruit (poly)phenol content is influenced by growing conditions, the study examines the seasonal effects of red grapes (Vitis vinifera L.), grown under various cultivation conditions, on metabolic markers of adipose tissue in healthy rats. METHODS AND RESULTS: For this purpose, Fischer 344 rats are exposed into three different light-dark cycles and daily supplemented with 100 mg kg-1 of either conventionally or organically grown red grapes for 10 weeks (n = 6). Seasonal consumption of organic grapes (OGs), which are richer in anthocyanins, increases energy expenditure (EE) of animals exposed to long photoperiod and enhances uncoupling protein 1 (UCP1) protein expression in brown adipose tissue of animals under standard photoperiod. Additionally, red grape consumption affects the gene expression profile of white adipose tissue (WAT), upregulating browning markers of subcutaneous WAT in 12 h light (L12) and 18 h light (L18) photoperiods, and downregulating adipogenic and lipolytic markers of visceral WAT in 6 h light (L6) and L12 photoperiods. CONCLUSIONS: These results clearly show that bioactive compounds of grapes can modulate the metabolic markers of white and brown adipose tissues in a photoperiod and depot-dependent manner, partly affecting EE when consumed out of season.

8.
Microbiome ; 11(1): 94, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37106463

RESUMEN

BACKGROUND: Excessive hedonic consumption is one of the main drivers for weight gain. Identifying contributors of this dysregulation would help to tackle obesity. The gut microbiome is altered during obesity and regulates host metabolism including food intake. RESULTS: By using fecal material transplantation (FMT) from lean or obese mice into recipient mice, we demonstrated that gut microbes play a role in the regulation of food reward (i.e., wanting and learning processes associated with hedonic food intake) and could be responsible for excessive motivation to obtain sucrose pellets and alterations in dopaminergic and opioid markers in reward-related brain areas. Through untargeted metabolomic approach, we identified the 3-(3'-hydroxyphenyl)propanoic acid (33HPP) as highly positively correlated with the motivation. By administrating 33HPP in mice, we revealed its effects on food reward. CONCLUSIONS: Our data suggest that targeting the gut microbiota and its metabolites would be an interesting therapeutic strategy for compulsive eating, preventing inappropriate hedonic food intake. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Motivación , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Obesidad/metabolismo , Alimentos , Recompensa
9.
Gut ; 72(5): 896-905, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36881441

RESUMEN

OBJECTIVE: Faecal microbiota transplantation (FMT) in germ-free (GF) mice is a common approach to study the causal role of the gut microbiota in metabolic diseases. Lack of consideration of housing conditions post-FMT may contribute to study heterogeneity. We compared the impact of two housing strategies on the metabolic outcomes of GF mice colonised by gut microbiota from mice treated with a known gut modulator (cranberry proanthocyanidins (PAC)) or vehicle. DESIGN: High-fat high-sucrose diet-fed GF mice underwent FMT-PAC colonisation in sterile individual positive flow ventilated cages under rigorous housing conditions and then maintained for 8 weeks either in the gnotobiotic-axenic sector or in the specific pathogen free (SPF) sector of the same animal facility. RESULTS: Unexpectedly, 8 weeks after colonisation, we observed opposing liver phenotypes dependent on the housing environment of mice. Mice housed in the GF sector receiving the PAC gut microbiota showed a significant decrease in liver weight and hepatic triglyceride accumulation compared with control group. Conversely, exacerbated liver steatosis was observed in the FMT-PAC mice housed in the SPF sector. These phenotypic differences were associated with housing-specific profiles of colonising bacterial in the gut and of faecal metabolites. CONCLUSION: These results suggest that the housing environment in which gnotobiotic mice are maintained post-FMT strongly influences gut microbiota composition and function and can lead to distinctive phenotypes in recipient mice. Better standardisation of FMT experiments is needed to ensure reproducible and translatable results.


Asunto(s)
Vivienda , Microbiota , Animales , Ratones , Calidad de la Vivienda , Obesidad/metabolismo , Trasplante de Microbiota Fecal , Fenotipo , Dieta Alta en Grasa/efectos adversos , Vida Libre de Gérmenes , Ratones Endogámicos C57BL
10.
Sci Rep ; 12(1): 22406, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575241

RESUMEN

Extracellular tannase Lactiplantibacillus plantarum-producing strains (TanA+) release bioactive metabolites from dietary tannins. However, there is a paucity of knowledge of TanA+ strains and their hydrolyzing capacities. This study aimed to shed light on the metabolic and genomic features of TanA+ L. plantarum strains and to develop a screening technique. The established spectrophotometric was validated by UPLC-UV-QToF. Eight of 115 screened strains harbored the tanA gene, and six presented TanA activity (PROBI S126, PROBI S204, RKG 1-473, RKG 1-500, RKG 2-219, and RKG 2-690). When cultured with tannic acid (a gallotannin), TanA+ strains released 3.2-11 times more gallic acid than a lacking strain (WCFS1) (p < 0.05). TanA+ strains with gallate decarboxylase (n = 5) transformed this latter metabolite, producing 2.2-4.8 times more pyrogallol than the TanA lacking strain (p < 0.05). However, TanA+ strains could not transform punicalagin (an ellagitannin). Genomic analysis revealed high similarity between TanA+ strains, as only two variable regions of phage and polysaccharide synthesis were distinguished. A phylogenetic analysis of 149 additional genome sequences showed that tanA harboring strains form a cluster and present two bacteriocin coding sequences profile. In conclusion, TanA+ L. plantarum strains are closely related and possess the ability to resist and transform gallotannins. TanA can be screened by the method proposed herein.


Asunto(s)
Lactobacillus plantarum , Taninos , Taninos/metabolismo , Filogenia , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Genómica
11.
Food Funct ; 13(21): 10895-10911, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36239175

RESUMEN

Many strategies are used to quantify microbial (poly)phenol metabolites (MPMs) in urine. Currently, to obtain accurate results, the use of phase II conjugate analytical standards is deemed to be the gold standard. However, these standards are expensive or commercially unavailable. Quantification using an affordable and commercially available unconjugated analytical standard following hydrolysis with the crude preparation from Helix pomatia containing arylsulfatase and ß-glucuronidase was once considered to be an alternative, but previous studies have shown poor hydrolysis efficiency for conjugated MPMs. In this work, we evaluated the efficiency of purified recombinant enzymes and compared them with the preparation from H. pomatia using 75 urine samples. 38 conjugated MPMs were identified before hydrolysis, associated with 17 unconjugated MPMs. Rapid chemical synthesis of sulfated compounds was carried out to increase the confidence level for the identification of 13 sulfated MPMs. Recombinant enzymes had a mean hydrolysis efficiency of over 95% for 36 out of 38 conjugated MPMs with a hydrolysis time of 30 min. In comparison, the preparation from H. pomatia achieved similar efficiency for only 28 conjugated MPMs after 6 h of hydrolysis. When comparing the concentration of unconjugated MPMs released after enzymatic hydrolysis, recombinant enzymes were more or as effective for almost every MPM. These results demonstrate that accurate quantification of MPMs in urine can be quickly achieved using purified recombinant enzymes and represent an affordable alternative to the use of conjugated analytical standards, improving access to the analysis of the metabolism of (poly)phenols by the gut microbiota.


Asunto(s)
Fenol , Glucuronidasa/metabolismo , Hidrólisis , Fenoles
12.
Front Immunol ; 13: 871080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052065

RESUMEN

The consumption of plant-based bioactive compounds modulates the gut microbiota and interacts with the innate and adaptive immune responses associated with metabolic disorders. The present study aimed to evaluate the effect of cranberry polyphenols (CP), rich in flavonoids, and agavins (AG), a highly branched agave-derived neo-fructans, on cardiometabolic response, gut microbiota composition, metabolic endotoxemia, and mucosal immunomodulation of C57BL6 male mice fed an obesogenic high-fat and high-sucrose (HFHS) diet for 9 weeks. Interestingly, CP+AG-fed mice had improved glucose homeostasis. Oral supplementation with CP selectively and robustly (five-fold) increases the relative abundance of Akkermansia muciniphila, a beneficial bacteria associated with metabolic health. AG, either alone or combined with CP (CP+AG), mainly stimulated the glycan-degrading bacteria Muribaculum intestinale, Faecalibaculum rodentium, Bacteroides uniformis, and Bacteroides acidifaciens. This increase of glycan-degrading bacteria was consistent with a significantly increased level of butyrate in obese mice receiving AG, as compared to untreated counterparts. CP+AG-supplemented HFHS-fed mice had significantly lower levels of plasma LBP than HFHS-fed controls, suggesting blunted metabolic endotoxemia and improved intestinal barrier function. Gut microbiota and derived metabolites interact with the immunological factors to improve intestinal epithelium barrier function. Oral administration of CP and AG to obese mice contributed to dampen the pro-inflammatory immune response through different signaling pathways. CP and AG, alone or combined, increased toll-like receptor (TLR)-2 (Tlr2) expression, while decreasing the expression of interleukin 1ß (ILß1) in obese mice. Moreover, AG selectively promoted the anti-inflammatory marker Foxp3, while CP increased the expression of NOD-like receptor family pyrin domain containing 6 (Nlrp6) inflammasome. The intestinal immune system was also shaped by dietary factor recognition. Indeed, the combination of CP+AG significantly increased the expression of aryl hydrocarbon receptors (Ahr). Altogether, both CP and AG can shape gut microbiota composition and regulate key mucosal markers involved in the repair of epithelial barrier integrity, thereby attenuating obesity-associated gut dysbiosis and metabolic inflammation and improving glucose homeostasis.


Asunto(s)
Agave , Endotoxemia , Microbiota , Vaccinium macrocarpon , Agave/metabolismo , Animales , Dieta Alta en Grasa , Glucosa/metabolismo , Inmunidad , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Vaccinium macrocarpon/metabolismo
13.
Gut Microbes ; 14(1): 2120344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36109831

RESUMEN

Consumption of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provides multifaceted health benefits. Recent studies suggest that ω-3 PUFAs modulate the gut microbiota by enhancing health-promoting bacteria, such as the mucin specialist Akkermansia muciniphila. However, these prebiotic properties have been poorly investigated and direct effects on the gut microbiome have never been explored dynamically across gut regions and niches (lumen vs. mucus-associated microbiota). Thus, we studied the effects of 1 week EPA- and DHA-enriched ω-3 fish-oil supplementation on the composition and functionality of the human microbiome in a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®). Gut microbial communities derived from one individual harvested in two different seasons were tested in duplicate. Luminal and outer mucus-associated microbiota of the ileum, ascending, transverse and descending colons were cultivated over 28 d from fecal inoculates and supplemented with ω-3 PUFAs for the last 7 d. We show that ω-3 PUFA supplementation modulates the microbiota in a gut region- and niche-dependent fashion. The outer mucus-associated microbiota displayed a higher resilience than the luminal mucin habitat to ω-3 PUFAs, with a remarkable blooming of Akkermansia muciniphila in opposition to a decrease of Firmicutes-mucolytic bacteria. The ω-3 PUFAs also induced a gradual and significant depletion of non-mucolytic Clostridia members in luminal habitats. Finally, increased concentrations of the short chain fatty acids (SCFA) propionate in colon regions at the end of the supplementation was associated positively with the bloom of Akkermansia muciniphila and members of the Desulfovibrionia class.


Asunto(s)
Ácidos Grasos Omega-3 , Microbioma Gastrointestinal , Microbiota , Akkermansia , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Expectorantes/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Volátiles , Fermentación , Firmicutes , Humanos , Mucinas , Prebióticos , Propionatos/farmacología , Verrucomicrobia
14.
Antioxidants (Basel) ; 11(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36009281

RESUMEN

Oxidative stress and chronic inflammation contribute to some chronic diseases. Aronia berries are rich in polyphenols. The aim of the present study was to characterize the cellular antioxidant effect of an aronia extract to reflect the potential physiological in vivo effect. Cellular in vitro assays in three cell lines (Caco-2, HepG2, and SH-SY5Y) were used to measure the antioxidant effect of AE, in three enriched polyphenolic fractions (A1: anthocyanins and phenolic acids; A2: oligomeric proanthocyanidins; A3: polymeric proanthocyanidins), pure polyphenols and microbial metabolites. Both direct (intracellular and membrane radical scavenging, catalase-like effect) and indirect (NRF2/ARE) antioxidant effects were assessed. AE exerted an intracellular free radical scavenging activity in the three cell lines, and A2 and A3 fractions showed a higher effect in HepG2 and Caco-2 cells. AE also exhibited a catalase-like activity, with the A3 fraction having a significant higher activity. Only A1 fraction activated the NRF2/ARE pathway. Quercetin and caffeic acid are the most potent antioxidant polyphenols, whereas cyanidin and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone showed the highest antioxidant effect among polyphenol metabolites. AE rich in polyphenols possesses broad cellular antioxidant effects, and proanthocyanidins are major contributors. Polyphenol metabolites may contribute to the overall antioxidant effect of such extract in vivo.

15.
Microbiol Spectr ; 10(5): e0243221, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35972287

RESUMEN

Uropathogenic Escherichia coli (UPEC) ecology-pathophysiology from the gut reservoir to its urothelium infection site is poorly understood, resulting in equivocal benefits in the use of cranberry as prophylaxis against urinary tract infections. To add further understanding from the previous findings on PAC antiadhesive properties against UPEC, we assessed in this study the effects of proanthocyanidins (PAC) rich cranberry extract microbial metabolites on UTI89 virulence and fitness in contrasting ecological UPEC's environments. For this purpose, we developed an original model combining a colonic fermentation system (SHIME) with a dialysis cassette device enclosing UPEC and a 3D tissue-engineered urothelium. Two healthy fecal donors inoculated the colons. Dialysis cassettes containing 7log10 CFU/mL UTI89 were immersed for 2h in the SHIME colons to assess the effect of untreated (7-day control diet)/treated (14-day PAC-rich extract) metabolomes on UPEC behavior. Engineered urothelium were then infected with dialysates containing UPEC for 6 h. This work demonstrated for the first time that in the control fecal microbiota condition without added PAC, the UPEC virulence genes were activated upstream the infection site, in the gut. However, PAC microbial-derived cranberry metabolites displayed a remarkable propensity to blunt activation of genes encoding toxin, adhesin/invasins in the gut and on the urothelium, in a donor-dependent manner. Variability in subjects' gut microbiota and ensuing contrasting cranberry PAC metabolism affects UPEC virulence and should be taken into consideration when designing cranberry efficacy clinical trials. IMPORTANCE Uropathogenic Escherichia coli (UPEC) are the primary cause of recurrent urinary tract infections (UTI). The poor understanding of UPEC ecology-pathophysiology from its reservoir-the gut, to its infection site-the urothelium, partly explains the inadequate and abusive use of antibiotics to treat UTI, which leads to a dramatic upsurge in antibiotic-resistance cases. In this context, we evaluated the effect of a cranberry proanthocyanidins (PAC)-rich extract on the UPEC survival and virulence in a bipartite model of a gut microbial environment and a 3D urothelium model. We demonstrated that PAC-rich cranberry extract microbial metabolites significantly blunt activation of UPEC virulence genes at an early stage in the gut reservoir. We also showed that altered virulence in the gut affects infectivity on the urothelium in a microbiota-dependent manner. Among the possible mechanisms, we surmise that specific microbial PAC metabolites may attenuate UPEC virulence, thereby explaining the preventative, yet contentious properties of cranberry against UTI.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Proantocianidinas , Infecciones Urinarias , Escherichia coli Uropatógena , Vaccinium macrocarpon , Humanos , Antibacterianos/farmacología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proantocianidinas/farmacología , Proantocianidinas/uso terapéutico , Infecciones Urinarias/prevención & control , Infecciones Urinarias/tratamiento farmacológico , Urotelio , Virulencia
16.
Plant Mol Biol ; 110(1-2): 107-130, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35725838

RESUMEN

KEY MESSAGE: The interaction between exogenous IBA with sucrose, light and ventilation, alters the expression of ARFs and Aux/IAA genes in in vitro grown Carica papaya plantlets. In vitro papaya plantlets normally show low rooting percentages during their ex vitro establishment that eventually leads to high mortality when transferred to field conditions. Indole-3-butyric acid (IBA) auxin is normally added to culture medium, to achieve adventitious root formation on in vitro papaya plantlets. However, the molecular mechanisms occurring when IBA is added to the medium under varying external conditions of sugar, light and ventilation have not been studied. Auxin response factors (ARF) are auxin-transcription activators, while auxin/indole-3-acetic acid (Aux/IAA) are auxin-transcription repressors, that modulate key components involved in auxin signaling in plants. In the present study, we identified 12 CpARF and 18 CpAux/IAA sequences in the papaya genome. The cis-acting regulatory elements associated to those CpARFs and CpAux/IAA gene families were associated with stress and hormone responses. Furthermore, a comprehensive characterization and expression profiling analysis was performed on 6 genes involved in rhizogenesis formation (CpARF5, 6, 7 and CpAux/IAA11, 13, 14) from in vitro papaya plantlets exposed to different rhizogenesis-inducing treatments. In general, intact in vitro plantlets were not able to produce adventitious roots, when IBA (2 mg L-1) was added to the culture medium; they became capable to produce roots and increased their ex-vitro survival. However, the best rooting and survival % were obtained when IBA was added in combination with adequate sucrose supply (20 g L-1), increased light intensity (750 µmol photon m-2 s-1) and ventilation systems within the culture vessel. Interestingly, it was precisely under those conditions that promoted high rooting and survival %, where the highest expression of CpARFs, but the lowest expression of CpAux/IAAs occurred. One interesting case occurred when in vitro plantlets were exposed to high levels of light in the absence of added IBA, as high rooting and survival occurred, even though no exogenous auxin was added. In fact, plantlets from this treatment showed the right expression profile between auxin activators/repressors genes, in both stem base and root tissues.


Asunto(s)
Carica , Carica/genética , Carica/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Indoles/metabolismo , Indoles/farmacología , Sacarosa/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Sci Total Environ ; 837: 155765, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35533855

RESUMEN

Returning turfgrass clippings to soil (i.e., mulching) has been shown to yield many benefits, such as reducing fertilizer requirements. However, previous reports on the contribution of clippings to turfgrass fertilization varies widely, making it difficult for turfgrass managers to adjust their fertilization practices. Other potential benefits of this practice, such as soil water conservation, still need to be quantified. The objectives of this project were to measure the contribution of Kentucky bluegrass clippings to N, P and K fertilization under four different N levels and to measure the impact of clippings management on turfgrass color (NDVI), soil nutrient and water content as well as thatch accumulation. A field experiment was conducted over three years, with treatments consisting of two clipping management strategies (returned or removed) and four nitrogen levels (0, 48, 96 and 144 kg N ha -1 yr -1). Clippings were collected on every mowing date and were analyzed for N, P and K foliar content. Soil volumetric water content and NDVI were measured weekly, while thatch accumulation and soil chemical content (Mehlich-3) were assessed twice per year. Increasing N fertilization resulted in an increase in both clippings dry matter yield (DMY) and foliar N concentration. Returning grass clippings was equivalent to doubling the amount of N applied through the fertilizer and resulted in an increase in turfgrass color and soil P and K levels. For P and K, clippings contribution was more affected by their DMY than by foliar concentrations. Grass clippings did not contribute to thatch accumulation, but resulted in a consistent increase (3.9% on average) in soil volumetric water content.


Asunto(s)
Nitrógeno , Suelo , Fertilización , Fertilizantes , Nitrógeno/análisis , Poaceae , Suelo/química , Agua
18.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36670951

RESUMEN

While the prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, no optimal pharmacotherapy is readily available to address its multifaceted risk factors and halt its complications. This growing challenge mandates the development of other future curative directions. The purpose of the present study is to investigate the efficacy of cranberry proanthocyanidins (PACs) in improving MetS pathological conditions and liver complications; C57BL/6J mice were fed either a standard chow or a high fat/high sucrose (HFHS) diet with and without PACs (200 mg/kg), delivered by daily gavage for 12 weeks. Our results show that PACs lowered HFHS-induced obesity, insulin resistance, and hyperlipidemia. In conjunction, PACs lessened circulatory markers of oxidative stress (OxS) and inflammation. Similarly, the anti-oxidative and anti-inflammatory capacities of PACs were noted in the liver in association with improved hepatic steatosis. Inhibition of lipogenesis and stimulation of beta-oxidation could account for PACs-mediated decline of fatty liver as evidenced not only by the expression of rate-limiting enzymes but also by the status of AMPKα (the key sensor of cellular energy) and the powerful transcription factors (PPARα, PGC1α, SREBP1c, ChREBP). Likewise, treatment with PACs resulted in the downregulation of critical enzymes of liver gluconeogenesis, a process contributing to increased rates of glucose production in type 2 diabetes. Our findings demonstrate that PACs prevented obesity and improved insulin resistance likely via suppression of OxS and inflammation while diminishing hyperlipidemia and fatty liver disease, as clear evidence for their strength of fighting the cluster of MetS abnormalities.

19.
Gut Microbes ; 13(1): 2004070, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34812123

RESUMEN

The Developmental Origins of Health and Disease (DOHaD) concept has been proposed to explain the influence of environmental conditions during critical developmental stages on the risk of diseases in adulthood. The aim of this study was to compare the impact of the prenatal vs. postnatal environment on the gut microbiota in dams during the preconception, gestation and lactation periods and their consequences on metabolic outcomes in offspring. Here we used the cross-fostering technique, e.g. the exchange of pups following birth to a foster dam, to decipher the metabolic effects of the intrauterine versus postnatal environmental exposures to a polyphenol-rich cranberry extract (CE). CE administration to high-fat high-sucrose (HFHS)-fed dams improved glucose homeostasis and reduced liver steatosis in association with a shift in the maternal gut microbiota composition. Unexpectedly, we observed that the postnatal environment contributed to metabolic outcomes in female offspring, as revealed by adverse effects on adiposity and glucose metabolism, while no effect was observed in male offspring. In addition to the strong sexual dimorphism, we found a significant influence of the nursing mother on the community structure of the gut microbiota based on α-diversity and ß-diversity indices in offspring. Gut microbiota transplantation (GMT) experiments partly reproduced the observed phenotype in female offspring. Our data support the concept that the postnatal environment represents a critical window to influence future sex-dependent metabolic outcomes in offspring that are causally but partly linked with gut microbiome alterations.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Glucosa/metabolismo , Caracteres Sexuales , Adiposidad/efectos de los fármacos , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Intolerancia a la Glucosa/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/microbiología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Embarazo , Vaccinium macrocarpon/química , Aumento de Peso/efectos de los fármacos
20.
Front Nutr ; 8: 689456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34268328

RESUMEN

The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...